İKİNCİ DERECE DENKLEMLER

A. TANIM

a, b, c reel sayı ve a ¹ 0 olmak üzere,

ax2 + bx + c = 0

ifadesine x e göre düzenlenmiş ikinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan (varsa) x reel sayılarına denklemin kökleri, tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi (doğruluk kümesi), çözüm kümesini bulmak için yapılan işleme de denklem çözme denir.



B. DENKLEMİN ÇÖZÜMÜ

1. Çarpanlara Ayırma Yoluyla Denklem Çözme

İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.











a, b, c reel sayı ve a ¹ 0 olmak üzere,

ax2 + bx + c = 0

ifadesine x e göre düzenlenmiş ikinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan (varsa) x reel sayılarına denklemin kökleri, tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi (doğruluk kümesi), çözüm kümesini bulmak için yapılan işleme de denklem çözme denir.



B. DENKLEMİN ÇÖZÜMÜ

1. Çarpanlara Ayırma Yoluyla Denklem Çözme

İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.










ax2 + bx + c = 0

ifadesine x e göre düzenlenmiş ikinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan (varsa) x reel sayılarına denklemin kökleri, tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi (doğruluk kümesi), çözüm kümesini bulmak için yapılan işleme de denklem çözme denir.



B. DENKLEMİN ÇÖZÜMÜ

1. Çarpanlara Ayırma Yoluyla Denklem Çözme

İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.









ifadesine x e göre düzenlenmiş ikinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan (varsa) x reel sayılarına denklemin kökleri, tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi (doğruluk kümesi), çözüm kümesini bulmak için yapılan işleme de denklem çözme denir.



B. DENKLEMİN ÇÖZÜMÜ

1. Çarpanlara Ayırma Yoluyla Denklem Çözme

İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.








1. Çarpanlara Ayırma Yoluyla Denklem Çözme

İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.







İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.






olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.



2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.





ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.




ax2 + bx + c = 0 denkleminde,

D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.



ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.


1) D > 0 ise denklemin farklı iki reel kökü vardır.

Bu kökler,




2) D = 0 ise denklemin eşit iki reel kökü vardır.



2) D = 0 ise denklemin eşit iki reel kökü vardır.

Bu kökler,


Denklemin bu köküne çift katlı kök ya da çakışık kök denir.

3) D < 0 ise denklemin reel kökü yoktur. Bu durumda denklemin karmaşık iki farklı kökü vardır.



C. İKİNCİ DERECEDEN BİR DENKLEME DÖNÜŞEBİLEN DENKLEMLERİN ÇÖZÜMÜ

1. Polinomların Çarpımı Veya Bölümü Şeklindeki Denklemlerin Çözümü




3) D < 0 ise denklemin reel kökü yoktur. Bu durumda denklemin karmaşık iki farklı kökü vardır.



C. İKİNCİ DERECEDEN BİR DENKLEME DÖNÜŞEBİLEN DENKLEMLERİN ÇÖZÜMÜ

1. Polinomların Çarpımı Veya Bölümü Şeklindeki Denklemlerin Çözümü





C. İKİNCİ DERECEDEN BİR DENKLEME DÖNÜŞEBİLEN DENKLEMLERİN ÇÖZÜMÜ

1. Polinomların Çarpımı Veya Bölümü Şeklindeki Denklemlerin Çözümü


1. Polinomların Çarpımı Veya Bölümü Şeklindeki Denklemlerin Çözümü




2. Yardımcı Bilinmeyen Kullanılarak Çözülebilen Denklemlerin Çözümü

Verilen denklemde benzer ifadeler yeniden adlandırılarak denklem basitleştirilir. Örneğin

x4 – 10x2 + 9 = 0 denkleminde x2 = t,

22x – 6 × 2x + 8 = 0 denkleminde 2x = u,

(x2 – 2x)2 – (x2 – 2x) – 30 = 0 denkleminde,

x2 – 2x = k,

denkleminde adlandırılması yapılarak çözüme gidilir.



3. Köklü Denklemlerin Çözümü

Bir denklemde bilinmeyen, kök içinde bulunuyorsa bu denkleme köklü denklem denir.

Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.



4. Mutlak Değer İçeren Denklemler

Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,








Verilen denklemde benzer ifadeler yeniden adlandırılarak denklem basitleştirilir. Örneğin

x4 – 10x2 + 9 = 0 denkleminde x2 = t,

22x – 6 × 2x + 8 = 0 denkleminde 2x = u,

(x2 – 2x)2 – (x2 – 2x) – 30 = 0 denkleminde,

x2 – 2x = k,

denkleminde adlandırılması yapılarak çözüme gidilir.



3. Köklü Denklemlerin Çözümü

Bir denklemde bilinmeyen, kök içinde bulunuyorsa bu denkleme köklü denklem denir.

Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.



4. Mutlak Değer İçeren Denklemler

Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,







x4 – 10x2 + 9 = 0 denkleminde x2 = t,

22x – 6 × 2x + 8 = 0 denkleminde 2x = u,

(x2 – 2x)2 – (x2 – 2x) – 30 = 0 denkleminde,

x2 – 2x = k,

denkleminde adlandırılması yapılarak çözüme gidilir.



3. Köklü Denklemlerin Çözümü

Bir denklemde bilinmeyen, kök içinde bulunuyorsa bu denkleme köklü denklem denir.

Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.



4. Mutlak Değer İçeren Denklemler

Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,






Bir denklemde bilinmeyen, kök içinde bulunuyorsa bu denkleme köklü denklem denir.

Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.



4. Mutlak Değer İçeren Denklemler

Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,





Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.



4. Mutlak Değer İçeren Denklemler

Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,




Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,



|x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.



D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,


ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,









E. KÖKLERİ VERİLEN İKİNCİ DERECEDEN DENKLEMİN KURULUŞU

Kökleri x1 ve x2 olan II. dereceden denklem;







E. KÖKLERİ VERİLEN İKİNCİ DERECEDEN DENKLEMİN KURULUŞU

Kökleri x1 ve x2 olan II. dereceden denklem;


Kökleri x1 ve x2 olan II. dereceden denklem;





Kural

ax2 + bx – c = 0 ... 

denkleminin kökleri x1 ve x2 olsun. m ¹ 0 olmak üzere, kökleri mx1 + n ve mx2 + n olan ikinci dereceden denklem denkleminde x yerine yazılarak elde edilir.








F. ÜÇÜNCÜ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax3 + bx2 + cx + d = 0 

denkleminin kökleri x1, x2 ve x3 ise,




Kökleri x1, x2 ve x3 olan III. dereceden denklemin kökleri:

Aritmetik dizi oluşturuyorsa; 

Geometrik dizi oluşturuyorsa; 



F. ÜÇÜNCÜ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR
ax3 + bx2 + cx + d = 0 

denkleminin kökleri x1, x2 ve x3 ise,




Kökleri x1, x2 ve x3 olan III. dereceden denklemin kökleri:

Aritmetik dizi oluşturuyorsa; 

Geometrik dizi oluşturuyorsa; 


ax3 + bx2 + cx + d = 0

Sayın ziyaretçi biliyor musunuz? Bu yazı sizden önce counter kişi tarafından okundu.


0 yorum

LÜTFEN YORUMLARINIZI YAZINIZ

Toplam Sayfa Görüntüleme Sayısı

Blogger tarafından desteklenmektedir.